罗尔斯·罗伊斯一直在英国制造技术中心(MTC)内研究使用电子化熔化制造XWB97K的前轴承叶片。在上万小时研究和超过4年制作数百个试验件后,公司认为在电子化熔化机床使用方面的经验已经世界第一。罗罗公司增材制造能力中心首席制造工程师表示:“每一层的沉积都有可能让工艺出错,定义热动力和运动的参数大约有400个,它们影响激光增材制造工艺的结果,其中超过100个都是非常重要的。有无数种方法生产同样的材料,意味着要采用不同的方法完成认证。这将让主要客户和供应链内的材料、制造和设计方面建立更紧密的联系。”
他指出,工业化仍是增材制造能力面临的挑战。“每个人都对增材感到兴奋,因为你只需按下按钮就能得到一个很好的零件,但是它需要精加工、去除粉末、无损检测、抛光加工、测量。我们每周都在做迭代,而且作为设备能力供应商的一个有挑战的客户是开发过程的全部。”
针对已知类型的材料、规格和质量,在生成抛光工件的能力上仍存在技术约束。对缺陷类型的严格分类和掌握情况还未成熟到生产能力可被称之为“可靠”的水平。多尺度建模和真正掌握缺陷静态分布的能力,如掺杂物、晶体错位、空腔、孔隙等,将在所有航空发动机零件生产所需的大量一次性工程工作上减少工作量铺平道路。
增材制造的组件在任何工程和结构制造能力的可靠演示上都已成为必须。显然目前这些零件还只是材料、工艺和设计工程工作的冰山一角,许多还处在飞行认证过程中,带头企业将这些技术转入大规模批产的方式还不是那么明显。一旦对一个特定零件的工艺得到认证,比如GE燃油喷嘴,迈向批产之路就将变得简单。金属航空发动机零件的供应链应该牢记这些,并且准备好对商业和人力的规模化需求。